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Abstract. Linear dispersion of elastic constants in non-centrosymmetric crystals has the effect of
lifting phase-velocity degeneracy along those acoustic axes which do not lie in symmetry planes.
The separating of the sheets of the isofrequency (or slowness) surface, even though slight at low
frequencies, nevertheless has a striking effect on the phonon intensity pattern near to the removed
degeneracy. Phonon focusing abides by the shape of the slowness surface, whose curvature is
singular at the degeneracy point. Hence, a small perturbation breaking the degeneracy entails a large
change of the curvature in a small region scaling in size with the magnitude of the perturbation. As a
result, new phonon focusing caustics may arise, and existing caustics may undergo major changes
near acoustic axes. Theoretical analysis reveals possible patterns of local transformation of the
slowness surface leading to different types of critical behaviour of phonon focusing. Criteria, in
terms of the elastic constants of a given crystal, are obtained for the emergence of focusing caustics.

1. Introduction

In non-centrosymmetric crystals lacking symmetry planes, the slight frequency dispersion of
acoustic phonons at long wavelengths λ � a (a is the lattice parameter) gives rise to striking
features in ballistic phonon-focusing patterns. This is due to the fact that in such crystals
dispersion has the effect of breaking the degeneracy between sheets of the constant frequency
surface.

Phonon group-velocity vectors are orthogonal to their constant frequency surface and
hence their distribution, which governs the phonon-intensity pattern, depends on this surface’s
curvature. From the theory of phonon imaging [1], it is known that the degree of phonon
focusing is inversely proportional to the Gaussian curvature of the constant-frequency surface;
in particular, lines of zero Gaussian curvature yield focusing caustics where the phonon
energy flux diverges. Near degeneracy points the curvature is singular, and therefore a small
perturbation-lifting degeneracy may have a dramatic impact on a focusing pattern. Some of
the effects thereby arising have been discussed in [2]. It was demonstrated that lifting of
a conical contact between isofrequency sheets in the direction of a 3-fold axis either brings
about a new focusing caustic or extensively modifies the existing ones. It was also noted that
lifting of a tangential degeneracy along a 4-fold axis may tear apart caustics intersecting at the
degeneracy point. In the present paper we explore the theoretical basis of these and other effects
of linear dispersion, such as dispersion-induced external conical refraction at a 6-fold axis and
new focusing caustics around a 4-fold axis. The critical conditions for emergence of various
phonon-focusing patterns are identified, and their evolution with frequency is described.

† Permanent address: Institute of Crystallography, Leninskii pr. 59, Moscow 117333, Russia.
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2. Background

Utilizing the framework of continuum elasticity for ballistic propagation of low-frequency
acoustic phonons in non-dissipative anisotropic solids lacking a centre of inversion yields the
dispersion equation in the form

det
[
(cijkl + idijklpkp)mjml − ρv2δik

] = 0 (1)

where ρ is the density, cijkl the elasticity coefficients, k the wavevector, v the phase velocity, m
the unit wave normal, dijklp = −dklijp the coefficients of linear spatial dispersion, which are of
relative magnitude kd/ρv2 ∼ ka � 1 [3, 4]. The constant-frequency (isofrequency) surface
ω = constant consists of three sheets�α representing the two-parameter locus of wavevectors
kα(m) = mω/vα . Usually, the innermost sheet is associated with the quasilongitudinal wave
branch (α = l) and so the other two sheets correspond to quasitransverse branches (fast α = ft
and slow α = st). The slowness surface is introduced as Sα = ω−1�α : sα(m) = m/vα ,
whence its principal curvatures K(α)

1 ,K
(α)
2 are ω−1 times those of the isofrequency surface.

The lines separating regions with a different sign of the Gaussian curvature K(α)
G = K

(α)
1 K

(α)
2

(parabolic lines where K(α)
G = 0) map onto phonon-focusing line caustics. In the absence

of dispersion, the innermost slowness sheet Sl is always convex (K(l)
1 ,K

(l)
2 > 0), while any

of the other two sheets Sα, α = st, ft, may include hyperbolic (K(α)
G < 0) and/or concave

(K(α)
1 ,K

(α)
2 < 0) regions. There are directions, termed acoustic axes, for which the velocities

of two waves (usually the quasitransverse ones) coincide and hence two slowness sheets Sst, Sft

meet. This meeting is of a conical type along 3-fold symmetry axes and in the case of a non-
symmetrical orientation of acoustic axis, and it is of a smooth tangential type along 4-fold
and 6-fold symmetry axes. Except for the case of 6-fold axes, the Gaussian curvature of the
slowness surface is singular at a degeneracy point (it depends on the approaching path). As a
result, parabolic lines may weave around and through a degeneracy point, thereby imposing
intricate configurations of phonon-focusing caustics [5–7].

In the non-dispersive limit, the phase velocities v0α in a given crystal depend solely
on the wave normal orientation m, and therefore the isofrequency surfaces for different
frequencies are all identical in shape to the slowness surface, differing from it only by a scaling
factor ω. Taking spatial dispersion into account implies that the phase velocity becomes
frequency dependent, vα = vα(ω,m), the dependence following from (1) in which k may be
approximated by ω/v0α . The shape of the isofrequency surfaces now changes with varying ω,
and hence so does the shape of the slowness surfaces referred to different constant frequencies.
Note, in particular, that the innermost sheet Sl may, in principle, become locally hyperbolic
or concave at some ω. However, dispersion-induced distortion of slowness surfaces in an
arbitrary direction remote from degeneracy is relatively small (on the order of (ka)2 � 1).
The impact of linear dispersion becomes critical where it lifts the phase-velocity degeneracy.
This happens if the degeneracy direction, referred to the non-dispersive limit, does not lie in
a symmetry plane; in particular, if it occurs along a principal symmetry axis in any of the
symmetry groups 3, 32, 4, 422, 6, 622, 23, 432 [3, 8]. Analysis of the ensuing critical features
of the phonon-intensity patterns is the subject of the following discussion.

3. 3-fold axis

In the absence of dispersion, a 3-fold axis provides a conical degeneracy between the slowness
sheets Sα (α = st, ft). At the conical point one of the principal curvatures for each of the
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sheets diverges as

K
(ft)
2 = −K(st)

2 ∼ θ−1 (2)

where θ is the angle between the wave normal m and the symmetry axis. This brings about
a phonon-intensity anticaustic (zero of intensity) at the circle of internal conical refraction
[9]. The other principal curvature, K(α)

1 , which is referred to the sections by family of planes
through the 3-fold axis, is undefined at the conical point. Its limiting value as θ → 0 depends
on the azimuth angle ϕ in accordance with† [7]

K
(α)
1 (ϕ) = 1

√
ρc44

[
1 + (c14/c44)

2
]3/2Cα(ϕ) α = st, ft (3)

where

Cα(ϕ) = c66 − c2
14

c44
+

1

2

(
�16 − d2

13

�34

) [
1 ∓ (sgn c14) sin 3ϕ

]
α = st, ft (4)

upper and lower signs corresponding to α = st and ft, respectively; the notation is

�ab = caa − cbb (a, b = 1, . . . , 6) dij = cijij + ciijj (i, j = 1, 2, 3). (5)

Associated with a sign of K(α)
1 (ϕ), there follow two possibilities for the local shape of the

sheets Sα:

(a) if

c11 − c2
14

c44
− d2

13

�34
> 0 (6)

thenCst(ϕ), Cft(ϕ) are positive for all ϕ, hence so areK(st)
1 (ϕ),K

(ft)
1 (ϕ),whence the outer

sheet Sst is hyperbolic and the inner sheet Sft is convex around the conical point;
(b) alternatively, if

c11 − c2
14

c44
− d2

13

�34
< 0 (7)

then Cα(ϕ) and hence K(α)
1 (ϕ) (α = st, ft) change signs with varying ϕ, so Sst has

alternating hyperbolic/concave segments, Sft has alternating convex/hyperbolic segments,
and the parabolic lines separating those segments skip from one of the sheets to the other
at the conical point. (Note that Cα(ϕ) cannot be negative for all ϕ because of the elastic-
stability condition c66c44 > c

2
14.)

Consider any one of the symmetry classes 3, 32, 23, 432, for which linear dispersion
breaks the degeneracy along a 3-fold axis. On general grounds, it is evident that the resulting
rounding of a conical point always renders the outer sheet Sst concave and the inner sheet Sft

convex within the close neighbourhood of the axis [2, 10]. Also clear is that outside a certain
critical region near the axis, the curvature values may be approximated by the non-dispersive
limit (2) and (3). Hence, in case (a) there is a new concave domain enclosing the 3-fold axis
on the sheet Sst which is surrounded by a hyperbolic region, and separating these is a closed
parabolic line that gives rise to an initially circular phonon-focusing caustic. In case (b) the
parabolic lines, which were intersecting at the conical point in the non-dispersive limit, now

† It is referred to the case of a 3-fold axis in a trigonal crystal, in which c25 = 0 for symmetry reasons or due to the
appropriate choice of the coordinate axis X1. All the results of this section can be adapted for a cubic crystal by the
standard replacement of elastic coefficients (e.g. [7]).
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link up in pairs away from the 3-fold axis, and thereby the phonon-focusing pattern consisting
of interchanging caustics of two quasitransverse branches disbands into a separate caustic for
each of the branches, as demonstrated in [2]. Let us now provide the analytical framework
describing the above-mentioned effects.

The perturbation-theory expansion for the phase velocities near the 3-fold axis may be
written in the form

ρv2
α = c44 +

1

2

(
�14 −�46 − d2

13

�34

)
θ2

∓
√

4c2
14θ

2 + c2
44η

2 + 2c14

(
�16 − d2

13

�34

)
θ3 sin 3ϕ α = st, ft. (8)

Here η is the dimensionless parameter, which is proportional to the linear-dispersion coefficient
d13233 ≡ d543 and is equal to the relative difference between the squared phase velocities
induced along the acoustic axis by the linear dispersion,

η = k0d

c44
|d543| = v2

ft − v2
st

v2
0d

(0 < η ∼ ka � 1) (9)

where k0d = ω/v0d and v0d = √
c44/ρ is the degenerate phase velocity in the non-

dispersive limit. For the wave normal directions so close to the 3-fold axis that θ � ka,
the principal curvatures for each of the sheets Sst, Sft neglecting terms ∼ ka � 1 are equal:
K
(α)
1 = K

(α)
2 , α = st, ft, and

K
(st)
1,2 = −K(ft)

1,2 = −2v0d

η
tan2"0 (10)

where "0 = arctan (c14/c44) is the apex half-angle of the cone of internal refraction. On
further deviation of the wave normal, yet remaining near the axis (θ � 1), the curvature K(α)

2

steadily decreases its large absolute value given by (10) and then by (2); whereasK(α)
1 changes

from (10) abruptly, tending to the value approximated by (3). The equation K(α)
1 (θ, ϕ) = 0

(α = st, ft), in an approximation for small θ, has the following solution:

θ3
α(ϕ) = ± c2

44

4 |c14|Cα(ϕ)η
2 α = st, ft (11)

(upper and lower signs corresponding to α = st, ft, respectively), where only positive values
of θα make sense.

In case (a), which implies that Cα(ϕ) > 0 at any ϕ (see (6)), equation (11) defines
the closed parabolic line θst(ϕ) ∼ η2/3 arising on the outer slowness sheet Sst due to linear
dispersion. Mapping of this parabolic line onto the group-velocity manifold (θst(ϕ), ϕ →
",#) gives the folding line of the emerging phonon-focusing caustic. Its angular extent
"st(ϕ) on the intensity pattern may be evaluated as

"st(ϕ) = "0 − 3

2
(
1 + c2

14/c
2
44

) [
C2

st(ϕ)

4 |c14| c44
η2

]1/3

. (12)

It is seen that the caustic originates on the internal-refraction circle and contracts inward, as
predicted in [2], at a ‘rate’ ∼ (ka)2/3. In case (b), when Cα(ϕ) changes sign with varying
ϕ, both equations (11) and (12) are valid for each of the branches α = st and α = ft in,
respectively, the opposite-lying sectors�ϕst = −�ϕft , within whichCα(ϕ) is positive and not
too small (allowing for θα(ϕ) ∼ η2/3). Those are the sectors, where ‘the formerly intersecting’
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parabolic lines link up to form smooth arches not reaching the 3-fold axis and so ‘the formerly
alternating’ segments of caustics belonging to different branches join together to form a closed
focusing pattern for each branch.

The effects discussed above can also occur in a non-centrosymmetric crystal with
symmetry planes, if it has an acoustic axis m0d outside of the symmetry planes so that the
corresponding conical degeneracy point of the slowness sheets is lifted under spatial dispersion
[8]. Unlike the case of a 3-fold axis, the local shape of disconnected slowness sheets is not
spherical (the relation for the near-axial case with the principal curvatures superseding (10) for
a generic orientation of m0d is presented in the appendix). The behaviour of focusing caustics
around m0d may follow one of the two options (a) and (b) near a 3-fold axis. Apart from those,
there is the possibility that in the non-dispersive limit the sheet Sst is concave and the sheet Sft is
hyperbolic everywhere around a conical point when it occurs in a non-symmetric direction m0d

[11]. In such a case it is the fast quasitransverse branch which under linear dispersion acquires
the closed parabolic line θft(ϕ) ∼ η2/3 and the corresponding phonon-focusing caustics emerge
at the internal-refraction ellipse.

4. 4-fold axis

In the absence of dispersion, the slowness sheets Sst, Sft touch each other along a 4-fold axis
of the elastic-tensor symmetry (this also includes a 2-fold axis in the 23 andm3 cubic groups).
Although the contact is smooth, the principal curvatures of the degenerate sheets depend on
the azimuth angle in the infinitesimal neighbourhood of the 4-fold axis, that is, the curvature
at the point of degeneracy is undefined. The degeneracy point may be (a) encompassed by a
region where the Gaussian curvature is of one sign; or else it may be (b) at an intersection of
four parabolic lines separating adjoining domains of different Gaussian-curvature sign, which
gives rise to a cross-like structure of focusing caustics. The classification of possibilities and
their criteria have been established in [5, 7].

Consider the effect of linear dispersion when it is to lift the degeneracy of slowness
sheets along a 4-fold axis. This specifies the symmetry groups 4, 422, 23, 432, which admit
d13233 �= 0. The perturbation-theory expansion for the phase velocities near the 4-fold axis
yields [8]

ρv2
α = c44 + 1

2ν3θ
2 ∓

√
1
4

(
ν2

1 cos2 2ϕ + ν2
2 sin2 2ϕ

)
θ4 + c2

44η
2 α = st, ft (13)

where η is defined by (9), and

ν1 = �16 − d2
13

�34
ν2 = d12 − d2

13

�34
ν3 = �14 −�46 − d2

13

�34
(14)

(ν1 = ν3 = � − d2/�, ν2 = d − d2/� in the case of cubic media; note that the parameters
ν1, ν3 also appear in the expansion (8) near the 3-fold axis). For θ � η1/2, the principal
curvatures of the sheets Sst, Sft neglecting the terms ∼ η are all equal, and are given by

K
(st)
1,2 = K

(ft)
1,2 = 1

2
√
ρc44

(
c11 + c66 − d2

13

�34

)
. (15)

Thus, the sheets Sst, Sft become spherical and either both convex or both concave in the
immediate neighbourhood of the axis. Note that any of the different possible curvature patterns,
characterizing the local shape of the degenerate sheets, undergoes an abrupt change to (15) no
matter how small the degeneracy-lifting perturbation η is, but then outside the critical region
θ ∼ η1/2 the sheets settle back to the shape well approximated by the non-dispersive limit.
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Figure 1. Possible effect of linear dispersion on the cross-like focusing caustic centred on
a 4-fold axis. (a) Schematic variation of the near-axial curvatures of the slowness sheet Sst
transforming under dispersion (the signs of principal curvature and the parabolic lines are indicated),
and the corresponding transformation of the phonon-intensity pattern for the α = st branch at
c11 : c12 : c44 = 5 : 3.7 : 1 and η = 0.0043 (the aperture angle is 4◦, the darkness of the grey scale
denotes intensity); (b) the same for the α = ft branch at c11 : c12 : c44 = 2 : 1.5 : 1.
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On this basis, the salient changes of the phonon-focusing caustics near the 4-fold axis under
linear dispersion can be straightforwardly predicted from knowledge of the elastic coefficients
of a given crystal. In case (a), if the sign of near-axial curvatures given by (15) differs from
the sign of one or both principal curvatures which conform to the non-dispersive limit, then,
respectively, one or two closed parabolic lines arise and hence one or two new focusing caustics
emerge. In case (b), the parabolic lines, which no longer can intersect along the 4-fold axis after
degeneracy is lifted, link up at θ ∼ η1/2 in either diagonal or face symmetry planes, causing
focusing caustics to terminate at cuspidal points without reaching the axis. Herewith, if the
near-axial shape does not match both surrounding curvature patterns, then a closed parabolic
line also appears and so a new focusing caustic develops.

The options can be sorted out particularly transparently for the cubic 23 and 432 crystals by
addressing the chart of the slowness-surface configurations in the non-dispersive limit plotted
as lines on the plane of elastic-constant ratios a = c11/c44, b = c12/c44 [5]. In these terms, the
threshold criterion for either the convex or concave dispersion-induced shape of the slowness
sheets at the 4-fold axes, which by (15) is

a2 − 1 − (b + 1)2 = 0 (16)

defines another line on the above-mentioned chart (it lies between lines C and D referred to
the α = st branch, and crosses at b = 0 the lineH referred to the α = ft branch). Consider the
branchα = st.When case (b) applies, one may observe that disconnected segments of the cross-
like caustic end up in the diagonal or face symmetry planes, respectively, if a2 −1− (b + 1)2 is
positive or negative (see the example in [2]). If a(a−1) < (b + 1)2 < a2 −1 (the area between
the line B and the line (16) in the chart [5]), then the new focusing caustic emerges, possibly
accompanied by unfolding of the cross-like caustic. The latter event (it occurs between the lines
C and (16)) is demonstrated in figure 1(a), which also confirms that the critical effect of linear
dispersion on focusing caustics is confined to the close neighbourhood of the axis. For the
α = ft branch, the following critical events are possible. In case (b), if 0 < a2 − 1 < (b + 1)2

(the area to the right of the line (16)), then segments of the cross-like caustic join up in the
diagonal plane and this is accompanied by the emergence of a four-cusped caustic (figure 1(b)).
If 1

2a (a + b) < (b + 1)2 < a2−1 (this is between the linesH and (16)), then those segments end
up in the face plane and no closed caustic arises. In case (a), if a2 −1 < (b + 1)2 < 1

2a (a + b)
(the region between the lines (16) andH,which exists at b < 0), then two new closed focusing
caustics appear, as shown in figure 2. One of them is smooth and rounded, while the other one
has an eight-cusped form and may be interpreted by analogy with [9] as the unfolded external
conical refraction caustic.

In conclusion to this section, it is pertinent to consider one particular case related to the
effect of spatial dispersion in centrosymmetric crystals. Here, the leading-order correction to
the elasticity tensor cijkl is hijklpqkpkq (quadratic dispersion). Being real and symmetric, such a
perturbation cannot eliminate a polarization-vector singularity associated with phase-velocity
degeneracy [12, 13], and so it cannot lift the degeneracy. It also cannot split but only shifts the
conical degeneracy occurring in a non-symmetric direction. The degeneracies along symmetry
axes remain intact except for the case of them3 cubic group, in which the quadratic dispersion
splits the tangential degeneracy along the 2-fold axes (the 4-fold axes for acoustic properties
in the absence of dispersion) into two conical ones. The perturbation-theory expansion for the
phase velocities gives

ρv2
α = c44 + 1

2ν1θ
2 + ζ+ ∓

√(
1
2ν1θ2 cos 2ϕ + ζ−

)2
+ 1

4ν
2
2θ

2 sin2 2ϕ α = st, ft (17)

where ζ± = (h311333 ± h32233) k
2/c44 ∼ (ka)2 is the parameter of quadratic dispersion. It is

seen that the split directions of degeneracy subtend an angle θ ∼ ζ
1/2
− ∼ ka and lie in one or
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Figure 2. An example of two focusing caustics emerging around a 4-fold axis under the effect
of linear dispersion: transformation of the near-axial curvatures of the slowness sheet Sft, and the
corresponding phonon-intensity pattern for c11 : c12 : c44 = 1.1 : −0.5 : 1 and η = 0.017 (the
aperture angle is 3◦).

the other symmetry plane containing the 2-fold axis, the choice being decided by the sign of
ν1ζ−. The slowness sheets Sst, Sft, disjointed along the 2-fold axis under quadratic dispersion,
acquire in its close proximity θ � ζ

1/2
− the following principal curvatures:

K
(st)
1 = K

(ft)
2 =

√
c44

ρ
K
(st)
2 = K

(ft)
1 = 1√

ρc44

(
c11 − d2

�

)
(18)

where terms ∼ (ka)2 are neglected. Thus, the sheets Sst, Sft along the 2-fold axes in the m3
group are either both convex or both hyperbolic when dispersion is at work. The threshold
criterion, given in the a, b notation by

a (a − 1)− (b + 1)2 = 0 (19)

coincides with the equation of the line B in the chart [5]. This facilitates a straightforward
prediction of the critical effects of quadratic dispersion on the phonon-focusing pattern of
a cubic m3 crystal. In case (a), the new focusing caustic appears for the α = st branch if
0 < (a + b) (a − 1) < (a − b − 2) (b + 1)2 (which is to the right of the lineD,where the new
hyperbolic region borders at θ ∼ ka with the concavity on Sst); and the new caustic appears
for the α = ft branch if a (a − 1) < (b + 1)2 < 1

2a (a + b) (this is between the lines B andH,
so the hyperbolic region convexity is surrounded by the convexity on Sft). Regarding case (b),
we note that the cross-like caustic may unfold by means of two pairs of parabolic lines merging
together in a strip which pushes apart two other pairs (figure 4). This reveals the 2-fold (rather
than the 4-fold) symmetry of the axis unveiled in the presence of quadratic dispersion.
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Figure 3. A pattern of transformation of the parabolic-lines intersection under the effect of quadratic
dispersion in an m3 cubic crystal (conical points are marked).

Figure 4. Near-axial shape of the slowness sheets coming apart along a 6-fold axis under the effect
of linear dispersion.

5. 6-fold axis

Due to the transverse isotropy of the elastic constants (ν1 = ν2 in (13)), the point of tangential
degeneracy along a 6-fold axis is a regular point of the slowness sheets, with well defined
principal curvatures [7, 14]

K
(st)
1,2 = c66√

ρc44
K
(ft)
1,2 = 1√

ρc44

(
c11 − d2

13

�34

)
if �16 >

d2
13

�34

K
(st)
1,2 = 1√

ρc44

(
c11 − d2

13

�34

)
K
(ft)
1,2 = c66√

ρc44
if �16 <

d2
13

�34
.

(20)

However, when linear dispersion lifts the degeneracy, which is the case for the groups 6 and
622, the near-axial shape abruptly changes in the same fashion as in the above-considered case
of a 4-fold axis. In effect, the curvature singularity at the degenerate point along a 6-fold axis
is suppressed in the absence of dispersion, but it reveals itself when degeneracy is removed
(albeit the transverse isotropy persists). For θ � η1/2, the in-plane principal curvatureK(α)

1 (θ)

(the one referred to the section by a zonal plane through the 6-fold axis) is approximated by

K
(α)
1 (θ) = 1

2
√
ρc44

[
ν1 + 2c66 ∓ ν2

1θ
2
(
ν2

1θ
4 + 12c2

44η
2
)

(
ν2

1θ
4 + 4c2

44η
2
)3/2

]
α = st, ft (21)

and the transverse principal curvature K(α)
2 (θ) by

K
(α)
2 = 1

2
√
ρc44

[
ν1 + 2c66 ∓ ν2

1θ
2(

ν2
1θ

4 + 4c2
44η

2
)1/2

]
α = st, ft. (22)

This leads to (15) at θ = 0 and to (20) at θ � η1/2 (θ � 1), whose combination in a
given crystal determines the evolution of the local shape of its slowness surface due to linear
dispersion. If

c11 − d2
13/�34 > 0 (23)
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then both sheets Sst, Sft stay convex for θ � 1 (figure 4(a)), and no critical effects occur in the
phonon-intensity pattern. If

c11 − d2
13

�34
< 0 c11 + c66 − d2

13

�34
> 0 (24)

then the inner sheet Sft still stays convex throughout the range θ � 1, whereas the outer sheet
Sst acquires two circular parabolic lines of an angular size θst1, θst2 ∼ η1/2 (figure 4(b)). The
first one, at which K(st)

1 (θ) = 0, separates the axial concavity from the domain of hyperbolic
points, and then the second one, at which K(ft)

2 (θ) = 0, separates the intermediate hyperbolic
belt from the exterior convexity. The latter parabolic line, evaluated by the equation

θ4
st2 = η2 c2

44�34
[
(c11 + c66)�34 − d2

13

]2

c66
(
�16�34 − d2

13

)2 (
d2

13 − c11�34
) (25)

defines the cone of wave normals which all have the same group-velocity vector parallel to the
6-fold axis. This leads to the phenomenon known as external conical refraction, which in case
(24) is induced by linear dispersion. Lastly, if

c11 + c66 − d2
13

�34
< 0 (26)

then the sheet Sst stays concave within the whole range θ � 1 and exhibits external conical
refraction which is only slightly disturbed in comparison with the non-dispersive limit (see
[14, 15]). At the same time, it is now the inner sheet Sft, which under the effect of linear
dispersion becomes concave around the 6-fold axis and so gains two parabolic lines of an
angular size θft1, θft2 ∼ η1/2 (figure 4(c)). The latter line, for wave normal directions θft2

defined by the same right-hand side (25), gives rise to the dispersion-induced external conical
refraction for the fast quasitransverse waves, which appears against the background of the
non-dispersive external conical refraction of the slow quasitransverse waves.

6. Experimental realizability

Linear spatial dispersion of phonons and ultrasound have been observed in crystals with a
number of techniques, including inelastic neutron scattering, Brillouin scattering, acoustic
activity and Bragg reflection of light. The aforementioned techniques probe the acoustic
dispersion relation ω(k) and, in particular, the splitting that occurs between the ST and FT
constant-frequency sheets at acoustic axes and its linear increase with frequency. To directly
access the wave surface, its folds and associated energy focusing caustics, and the evolution
of these with frequency, requires transport measurements either with ultrasound or thermal
phonons.

The ultrasound experiments that in the past have been brought to bear on the study of
focusing have operated from 5 to 382 MHz. At the lower end of this frequency range, internal
diffraction effects obliterate all but the dominant focusing structures, and even at the higher
frequencies, diffraction tends to obscure finer caustic structures of the type discussed in this
paper. To overcome this obstacle, significantly higher frequencies and/or larger samples would
be required.

The most promising avenue at present for observing the structures discussed here is
with thermal phonons in the frequency range around 100–500 GHz. In phonon-imaging
experiments, which display the directional dependence of the phonon flux emanating from a
small heated spot which is raster scanned across the surface of a crystal, focusing caustics are
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revealed in striking detail. These experiments are conducted at liquid helium temperatures,
under which conditions thermal phonon mean free paths are comparable to or larger than
the sample’s dimensions, so that the phonon transport is ballistic rather than diffusive. For
detection, small superconducting bolometers are used, which measure the total incident energy
flux of phonons, while frequency selectivity is achievable with the use of superconducting
tunnel junction detectors.

There is an extensive literature (reviewed in [1]) on the phonon images of crystals both
for lower-frequency non-dispersive phonons and for large-wavevector strongly dispersive
phonons. The subject matter of the present paper concerns the intermediate-frequency range
where dispersive effects first make their appearance, and under the conditions described earlier,
are linear in frequency. This regime for quartz has been explored experimentally by Koos
et al [17] and theoretically by Every [2]. There was only limited frequency resolution in the
experiments, and the observed phonon focusing patterns were the superposition of focusing
patterns over a range of frequencies. Nevertheless, clear structures survived, albeit not as sharp
as non-dispersive caustics.

The angular resolution which is achievable in phonon imaging (e.g. Shields et al [18]
report measurements on a caustic in silicon to 0.09◦) is sufficient to reveal the main structures
contained in the calculated images in figures 1 and 2, which extend over 3◦–4◦ of arc.
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Appendix

Consider an arbitrary non-centrosymmetric crystal (barring cubic and hexagonal ones), and
assume an acoustic axis m0d which is neither parallel to a symmetry axis nor lies in
a symmetry plane. The perturbation-theory expansion for the phase velocities at m ≈
m0d + θeϕ (m0d ·eϕ = 0, θ � 1) gives [8]

ρv2
α = ρv2

0d + 2ρv0dw · eϕθ ∓
√[
(p · eϕ)

2 + (q · eϕ)
2
]
θ2 +

(
ρv2

0dη
)2

α = st, ft. (A1)

Here

w = 1

2v0d
(A01cA01 + A02cA02)m0d

p = (A01cA01 − A02cA02)m0d q = (A01cA02 + A02cA01)m0d

(A2)

are the vectors describing the elliptical cone of internal refraction in the non-dispersive
limit [16]: w connects its apex with the centre of the base, and p, q determine the lengths
of base semiaxes (A01,A02 denote arbitrary unit vectors which make a rectangular frame
with the polarization vector A03 of the non-degenerate wave propagating along m0d , and
A0αcA0βm0d ≡ cijkl (A0α)i

(
A0β

)
k
(m0d)l). The spatial-dispersion parameter η, lifting the

degeneracy, is defined with respect to arbitrary anisotropy as

η = ω

ρv3
0d

∣∣dijklp (m0d)j (m0d)l (m0d)p (A01)i (A02)k
∣∣. (A3)

In the very close neighbourhood of the acoustic axis m0d , such that θ � η ∼ ka, the group-
velocity vectors of the disconnected branches α = st, ft are approximately (in neglect of terms
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∼ η) equal to w, and the principal curvatures of the separated slowness sheets to leading order
are

K
(st)
1,2 = −K(ft)

1,2 = − 1

4η |w|3 ρ2v2
0d

{
(w × p)2 + (w × q)2

±
√[
(w × p)2 + (w × q)2

]2 − 4w2v2
0d (p × q)2

}
(A4)

where × denotes a vector product; the alternative signs correspond to the different principal
curvatures of each sheet. It is readily confirmed that K(st)

1,2 < 0, K(ft)
1,2 > 0. The Gaussian

curvature given by (A4) is

K
(st)
G = K

(ft)
G = (p × q)2

4η2ρ4w4v2
0d

. (A5)

Equation (A4) becomes (10) for w × m0d = 0, hence w2 = v2
0d and w · p = w · q = 0.

Note that p × q =0 along the line of intersection of the slowness sheets (line of wedge
degeneracy), which is common for hexagonal crystals [16]. Given that linear dispersion lifts
this degeneracy (η �= 0, the groups 6, 622), equation (A4) reveals a large value of the in-plane
curvature K(ft)

1 = −K(st)
1 ∼ 1/η at the rounded points of disconnected sheets. Equation (A5)

is not valid in this case, since the transverse curvature is to be evaluated from the next-order
term, for which critical dependence on the dispersion parameter η cancels out.
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